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In managing chronic diseases such as glaucoma, the timing of periodic examinations is crucial, as it may significantly
impact patients’ outcomes. We address the question of when to monitor a glaucoma patient by integrating a dynamic,
stochastic state space system model of disease evolution with novel optimization approaches to predict the likelihood of
progression at any future time. Information about each patient’s disease state is learned sequentially through a series of
noisy medical tests. This information is used to determine the best time to next test based on each patient’s individual
disease trajectory as well as population information. We develop closed-form solutions and study structural properties of
our algorithm. While some have proposed that fixed-interval monitoring can be improved upon, our methodology validates
a sophisticated model-based approach to doing so. Based on data from two large-scale, 10+ years clinical trials, we show
that our methods significantly outperform fixed-interval schedules and age-based threshold policies by achieving greater
accuracy of identifying progression with fewer examinations. Although this work is motivated by our collaboration with
glaucoma specialists, the methodology developed is applicable to a variety of chronic diseases.
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1. Introduction
Glaucoma is a leading cause of visual impairment in the
United States and worldwide. It is estimated that over
2.2 million Americans have glaucoma, and the number
is expected to grow to more than 3 million by 2020
(see Friedman et al. 2004, Quigley and Broman 2006).
Glaucoma is often asymptomatic early in the course of the
disease, but if left untreated, it leads to gradual and pro-
gressive loss of vision, ultimately resulting in irreversible
blindness. Early identification of progression and appropri-
ate treatment can slow or halt the rate of vision loss (see
NEI 2011).

Patients suffering from glaucoma are monitored periodi-
cally via noisy quantitative tests to determine whether the
disease is stable or a change in treatment is warranted to
slow glaucoma-related vision loss. There is often a clear
trade-off between monitoring intervals that are too short
(little information is gained between readings, and there is
unnecessary cost and undue discomfort and/or anxiety for

the patients) and too long (the patient’s long-term outcomes
may be affected adversely by the delay in detecting disease
progression). However, no consensus exists as to the opti-
mal frequency by which testing should take place, and the
ideal frequency of testing can vary from patient to patient
(see Jansonius 2006, 2007). Multiple factors (including age,
family history, race, intraocular pressure levels, visual field
variables, type 2 diabetes mellitus, medical history, and
genetic factors among others) may affect the initial onset
of the disease and its progression (Tielsch et al. 1990).
With the movement toward patient-centered models of care
(see Bensing 2000), monitoring guidelines that incorporate
information from the patient’s history are needed.

The standard for glaucoma care is to periodically mea-
sure intraocular pressure (IOP) (see Lee et al. 2007b,
Musch et al. 2008) and peripheral vision, as captured by
visual field (VF) testing (see Bengtsson et al. 2009, Diaz-
Aleman et al. 2009, McNaught et al. 1995, Zahari et al.
2006) to determine if and when an intervention should be
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performed to slow glaucoma-related vision loss. The IOP
test measures the fluid pressure in the eye. A high IOP is an
important risk factor that can lead to damage of the optic
nerve and loss of peripheral vision. The automated VF test
examines the sensitivity of the eye to light stimuli, which
is a way of quantifying peripheral vision loss. Standard
automated VF tests provide a quantitative metric on sensi-
tivity to light throughout the field of vision, as well as a
number of global indices comparing the patient’s test per-
formance to that of a healthy individual with no glaucoma
(see Choplin and Edwards 1999). Two of the VF perfor-
mance indices commonly used in clinical practice are mean
deviation (MD) and pattern standard deviation (PSD). Test-
ing noise is associated with both IOP readings and VF
test results. During the VF test, patients can get nervous
or tired, which can lead to false positive and false neg-
ative responses. Moreover, patients may experience fixa-
tion loss, which introduces error into test results. The VF
test can be long, uncomfortable, and burdensome, particu-
larly for elderly patients (see Gardiner and Demirel 2008).
There is a clear trade-off understood by the Glaucoma
provider community between monitoring intervals that are
either too short (high cost and unnecessary discomfort) or
too long (disease progression goes undetected) (see Glen
et al. 2014; Lee et al. 2006, 2007a). Subject to the judg-
ment and expertise of eye care providers, the frequency
with which patients undergo testing may be as infrequent
as every two years (see American Academy of Ophthal-
mology Glaucoma Panel 2010). This frequency depends on
a variety of factors including disease severity and stabil-
ity of the disease. The expense of conducting these tests
can be significant for both the patients and the overall U.S.
healthcare system (see Lee et al. 2006, Rein et al. 2006,
Alliance for Aging Research 2011).

In addition to using data from perimetry (VF) and IOP
to assess for glaucoma progression, there are also struc-
tural tests that assess for pathology to the optic nerve and
retinal nerve fiber layer (e.g., optical coherence tomogra-
phy (OCT), confocal scanning laser ophthalmoscopy, and
scanning laser polarimetry). While these tests are becom-
ing increasingly useful in clinical practice (see Schuman
et al. 2012), unfortunately these tests were not commer-
cially available when the clinical trials, on which our anal-
ysis is based, were carried out. Fortunately, our research
models are scalable and will be able to accommodate data
from structural testing in the future.

1.1. The Disease Monitoring Problem

Motivated by the nature of chronic disease management,
this research explores solutions to the disease monitoring
problem. The monitoring problem that we treat in this paper
is distinctly different from disease screening and detection.
Screening models serve to detect or rule out whether or
not a person has a disease based on disease prevalence
and possibly transmission models. The monitoring prob-
lem that we pursue in this paper focuses on the need to

Table 1. A description of our modeling paradigm and
contributions to theory and clinical practice.

Controlled Gaussian state
space modeling approach

State space scalability High
Stochasticity Separate system noise and

measurement noise
Patient centered model Feedback driven; learns each patient’s

unique disease dynamics
Clinician interactive Clinician can tailor model to each

patient’s needs
Solution approach Closed-form solution enables

techniques and real-time decision
support

Generalizability to other
diseases

High

perform a series of ongoing tests over time to promptly
identify time epochs at which patients who already have
a disease are experiencing a progression/worsening of the
disease. In contrast with screening problems, disease mon-
itoring involves (1) tracking individual patients over time
(rather than population level modeling), (2) gaining new
and rich information about an evolving disease state with
each test (as opposed to the yes/no result of a screening
test), and (3) dynamic decisions of when to take tests based
on the history of information learned about the patient up
to the current time point. This class of problems poses dif-
ferent modeling challenges than the screening problem and
opens the way for new operations research methods that
have potential to positively impact longitudinal patient care.

In this paper we develop models and methods for deter-
mining the appropriate timing of monitoring tests based on
the control of a linear Gaussian system for disease progres-
sion that is customizable for each patient. Table 1 summa-
rizes some of the interesting and powerful features of our
modeling approach.

In clinical practice, physicians monitor many chronic dis-
eases by administering a set of quantifiable tests to gain
information about a patient’s disease state (such as VF and
IOP). One- or two-dimensional state spaces are often insuf-
ficient to incorporate the richness of data involved in clini-
cal decision making. This causes a problem for paradigms
such as Markov decision process (MDP), which suffer from
the curse of dimensionality. While approximate dynamic
programming (ADP) techniques can deal with large state
spaces, the need to incorporate noisy observations and the
need for a continuous state makes the problem even more
challenging. Continuous state space models characterized
as first-order vector difference equations and white multi-
variate Gaussian noise inputs can easily accommodate large
state spaces, noisy data, and rich data inputs. To capture
a wide range of dynamic behavior, we include in the state
not only a test measurement itself but its most important
derivatives (e.g., first, second). The inclusion of variable
derivatives in the state represents a departure from tradi-
tional disease modeling. The inclusion of an nth derivative
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makes it possible to capture the nth order dynamics in the
“position” variable, thereby allowing a first-order model to
capture nonlinear behavior in key variables.

As with glaucoma, chronic disease monitoring typically
involves both system noise (e.g., stochastic disease evo-
lution) and measurement noise (e.g., testing errors). Cap-
turing both types of noise is difficult in some stochastic
control paradigms, yet these noise components are critical
to capturing the true dynamics of chronic disease care. Our
approach captures correlated multivariate Gaussian white
noise that is present in many medical tests, including VF
tests and IOP tests.

Our modeling framework is, to our knowledge, one of
the first patient-centered decision support mechanisms for
glaucoma monitoring. The model is feedback driven, which
means that it learns about each patient’s unique disease
evolution dynamics via better state estimation as the clin-
ician receives more test results, allowing our algorithm to
fit the policy to the specific individual’s disease. Another
important feature that is gaining increasing attention in the
clinical community is that two patients can experience the
same symptoms very differently, so monitoring schedules
should be tailored to the patient’s experience of the symp-
toms and not just to the symptoms themselves (see Fowler
et al. 1988). To avoid a “one size fits all” policy, we allow
the clinician to adjust the algorithm based on three lev-
els of aggressiveness to tailor the monitoring schedule to
each individual patient’s needs. For example, a clinician
would likely prescribe a different treatment approach for an
elderly patient with comorbidities versus a young, healthy
patient with the same level of glaucoma.

From an analytical perspective, we develop a closed-
form solution to a nonlinear optimization over the mul-
tivariate Gaussian density describing future disease state.
This optimization determines the monitoring frequency,
which enables (1) efficient solutions for real-time clinical
decision support and (2) identification of structural prop-
erties that provide important clinical insight into testing
frequency. Our insights and results support recent clinical
hypotheses on dynamic monitoring.

Beyond analytical results, clinical relevance and accep-
tance hinges on rigorous model validation. We tested our

Figure 1. (Color online) Decision support framework for chronic disease monitoring.

Decision model with embedded kalman filter

Estimate
current state
(Eq. 9, 10)

Forecast future states
and link to the

Probability of Progression
(ProP)

(Eq. 13–15), §3.3

Controls/Decisions
(Eq. 18, 20)

Intraocular Pressure (IOP)

Visual Field (VF)

Model output

M
od

el
 in

pu
t

Noisy tests

Decision support

Time to Next Test (TNT)

Probability of Progression (ProP)

algorithm using data from two large-scale, 10+ year glau-
coma clinical trials. We show that our methods significantly
outperform current practice by achieving greater accuracy
in identifying progression with fewer examinations.

Finally, the monitoring problem we address in this
manuscript is not unique to glaucoma. Medical conditions
that would benefit most from our approach are (1) asymp-
tomatic early on in the disease; (2) effectively treatable to
prevent morbidity and mortality if progression is detected
early enough; (3) progressive and require patients to be
followed over extended periods of time; (4) can lead to
serious complications (such as blindness, kidney failure,
stroke, and heart attack); and (5) have quantifiable measures
(such as protein level measurements, blood pressure mea-
surements, and viral load levels). Examples of chronic dis-
eases for which physicians periodically monitor a number
of quantifiable medical tests to capture progression include
diabetes mellitus, connective tissue diseases, kidney dis-
eases, and lupus. Given that chronic diseases affect almost
one out of every two adults in the United States and account
for 75% of U.S. healthcare spending (see CDC 2013), the
proposed methodology has the potential for a broad impact
on cost as well as on patients’ quality of care and quality
of life.

A high level view of our approach to disease monitoring
is depicted in Figure 1. The model begins with an observa-
tion epoch at which the patient is given the required set of
medical tests (e.g., VF and IOP tests). These tests may be
perturbed by measurement noise. The noisy measurements
are fed into a Kalman filter (also known as a Kalman-Bucy
filter) model to obtain an estimate of the current disease
state as well as a forecast specifying a distribution on the
patient’s future disease state. The forecasted disease state
is then fed into a function—we term this the probability
of progression �ProP� function—that converts the disease
state into a probability that the patient will have progressed
sufficiently to warrant a change in disease management.
Finally, the time to next test (TNT) is given by a func-
tion that identifies the earliest time point that the patient’s
forecasted probability of progression will exceed a prede-
termined progression threshold.
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This paper’s methodological contributions include the
analysis of the interaction of the ProP function with the
state space model parameters and the Kalman filter mean
and covariance calculations. The structural properties ana-
lyzed generate new insights into the practice of monitoring
patients, some of which have been hypothesized by physi-
cians (see Jansonius 2007), but have yet to be mathemati-
cally modeled.

The remainder of the paper is organized as follows. Sec-
tion 2 provides an overview of the relevant literature. Dis-
ease state estimation and forecasting are detailed in §3.
In §4, we discuss our approach to determine the TNT and
the solution and structural properties of our algorithm. Sec-
tion 5 applies our models retrospectively to two large-scale,
10+ year glaucoma clinical trials for validation and demon-
strates how our algorithm can deliver improved patient care
with fewer tests compared to other policies that are similar
to current practice. We describe how our algorithms may
be integrated into current practice as well as discuss model
limitations in §6. Finally, we discuss our results and future
directions in §7.

2. Current State of Literature
There are three primary areas in the literature relevant to
our approach: (1) medical examination models; (2) machine
surveillance, inspection and maintenance; and (3) linear
quadratic Gaussian (LQG) systems with controlled obser-
vations (i.e., control of measurement subsystems).

Medical Examination Models. Most research in the field
focuses on performing discrete screenings to detect the first
incidence of a disease, rather than monitoring an ongo-
ing chronic disease. Denton et al. (2011) provides insight
into some of the open challenges in this area, including
those that we address here. The two main approaches are
either cost based or assume a fixed number of examina-
tions. Such models have been developed for cancer and
diabetes mellitus among other chronic diseases (see Lincoln
and Weiss 1964, Michaelson et al. 1999, Shwartz 1978,
Baker 1998, Maillart et al. 2008, Rauner et al. 2010, Zelen
1993, Özekici and Pliska 1991, Hanin and Yakovlev 2001,
Kirch and Klein 1974, Day and Walter 1984, Chhatwal
et al. 2010). The recent work of Ayer et al. (2012) begins to
explore personalizing testing schedules incorporating risk
factors and history of tests similarly to our work. Lee and
Wu (2009) develop disease classification and prediction
approaches using math programming.

A second related research area involves monitoring and
treatment decisions of an ongoing condition. Work has been
done with regard to the timing of initial treatment (see
Shechter et al. 2008, Denton et al. 2009, Shechter et al.
2010). The above research, however, does not incorporate
multidimensional state spaces in feedback driven control
loops to monitor patient-specific disease progression. For
example, models have been developed for the treatment of
HIV, diabetes, organ transplantation, cancer, and manage-
ment of drug therapy dosages (see D’Amato et al. 2000,

Lee et al. 2008, Alagoz et al. 2004, Lavieri et al. 2012,
Hu et al. 1996). These approaches, however, only model a
low dimensional health state with varying levels of degra-
dation. In addition, existing models that consider frequency
of monitoring decisions do not incorporate dynamic updat-
ing of information, rather making the assumption that all
patients progress according to population statistics-driven
transition functions. This is insufficient for the complex
disease modeling we pursue in this work.

There is little work that seeks to model the complex-
ities of a given disease by considering multiple interact-
ing physiological indicators available. By using Gaussian
state space models for disease progression and monitoring,
our work is able to capture multidimensional, continuous
state space models with correlated measurement noise in
a tractable manner. This approach increases the scope of
monitoring problems that can be solved and opens up the
possibility of capturing complex and evolving diseases that
are measured using a variety of different tests.

Machine Surveillance, Inspection and Maintenance. Ex-
tensive literature surveys of machine maintenance, inspec-
tion, and surveillance include Pierskalla and Voelker
(1976), Sherif and Smith (1981), Barlow et al. (1996),
and Wang (2002). These surveys propose that the litera-
ture can be divided into five primary modeling approaches:
(1) age replacement models, (2) block replacement models,
(3) delay-time models for inspection, (4) damage models,
and (5) deterioration models.

Model types (3)–(5) are particularly relevant to the mon-
itoring of chronic diseases. Damage models determine the
properties of the failure time (e.g., disease progression), but
do not consider the effect of inspections (see Nakagawa
and Osaki 1974, Morey 1966). Deterioration and delay-
time models assume that machine degradation can only be
observed by inspecting the system. Inspection carries cost
c1, the current state of degradation carries a cost of c2, and
there is typically a cost for replacement and/or repair pro-
portional to the state of deterioration (see Luss 1976, Yeh
1997, Ohnishi et al. 1986a, Mine and Kawai 1975, Derman
and Sacks 1960, Bloch-Mercier 2002) or the length of time
a failure goes undetected (see Keller 1974, Kander 1978,
Munford and Shahani 1972, Donelson 1977, Luss 1983,
Savage 1962, Barlow et al. 1963). These models, however,
consider a one-dimensional state space with Markovian or
semi-Markovian system dynamics and perfect observations,
which is insufficient for our application.

In non-Markovian surveillance and inspection models
(see Antelman and Savage 1965, Nakagawa and Yasui
1980, Kander and Raviv 1974, Chitgopekar 1974), the
state space is still one-dimensional and the observations are
assumed to be perfect. Papers that consider noisy or uncer-
tain observations include Savage (1964), Noonan and Fain
(1962), Rosenfield (1976), Eckles (1968), Ohnishi et al.
(1986b). Again, the state space is one-dimensional and,
while some models consider rich noise components, most
consider only simple noise. Chronic disease progression

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
0.

18
2.

75
.2

30
] 

on
 0

8 
O

ct
ob

er
 2

01
6,

 a
t 0

7:
12

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Helm et al.: Dynamic Forecasting and Control for Glaucoma
Operations Research 63(5), pp. 979–999, © 2015 INFORMS 983

monitoring requires a multidimensional state space with
both observation noise and correlated system noise. By
incorporating these features, this paper expands the mod-
eling approaches in inspection/surveillance and deteriora-
tion/damage modeling.

Linear Gaussian Systems. Linear Gaussian systems and
LQG have been used in many different applications in
dynamical systems modeling, estimation, and control the-
ory. Our models, however, focus on systems without fixed
observation intervals, which represents a major departure
from the foundational models. Sensor scheduling research
does investigate the question of how frequently, for a given
set of available sensors, one should take measurements and
from which sensors. However, our decisions on when to
test and whether or not to declare progression fall out-
side the class of quadratic objective functions used in sen-
sor scheduling. Work in sensor scheduling includes Mehra
(1976), Oshman (1994), Wu and Arapostathis (2008); how-
ever, this literature typically assumes that a measurement
is taken every period (though from different sensors). Con-
trol of measurement subsystems (see Meier III et al. 1967,
Athans 1972, Lafortune 1985) is the area most closely
related to ours. This work considers the problem of whether
or not to take a measurement in each period. There is a
cost for taking a measurement, a cost for system control,
and a cost associated with each system state at every time
instance. Our work extends the LQG control theory by for-
mulating and analyzing the class of monitoring problems
in combination with user input and employing nonstandard
optimization approaches incorporating potentially complex
disease progression functions.

3. State Space Modeling of Progression
We develop state space models for estimating and fore-
casting a patient’s disease trajectory. In §3.1 we present
our modeling approach, which is then applied in §3.2 to
glaucoma patients from two major clinical trials, the Col-
laborative Initial Glaucoma Treatment Study (CIGTS) and
Advanced Glaucoma Intervention Study (AGIS). Finally,
§3.3 briefly describes the nature of the ProP estimator that
converts a modeled disease state into a probability of pro-
gression. This component links the forecasting mechanisms
developed in this section with the control on testing inter-
vals presented in §4, which is illustrated in Figure 1.

3.1. Gaussian Continuous State Models of
Disease Measurement Dynamics

Our vector continuous state space models are in the class
of first-order stochastic difference equations with correlated
Gaussian noise inputs such that the noise is independent
from one period to the next (i.e., white). These first-order
models are adequate for a surprisingly general class of sys-
tems, especially if state augmentation is used to linearize
a nonlinear model by including the derivatives of key vari-
ables in the state space (see Bertsekas 1987, 2000a, b).

This class of systems allows us to develop correlated mul-
tivariate Gaussian noise models for both (1) process noise,
which can approximate the effect of unmodeled dynamics,
and (2) measurement noise in medical test measurements.
Our system model underlying the Kalman filter is com-
prised of a continuous, vector patient disease state and the
system disease dynamics.

3.1.1. Patient Disease State. Current evidence indi-
cates that a primary indicator of glaucoma progression is
worsening of the visual field, and that IOP is a critical risk
factor for future progression. In our model, we consider a
nine-dimensional column vector to model the state of the
patient, �t:

�t = 6MD1MD′1MD′′1PSD1PSD′1PSD′′1

IOP1 IOP′1 IOP′′7T 1 (1)

where MD and PSD refer to two global measures of per-
formance from the visual field test. Additional measures
of performance from that test might be used contingent on
data availability. Similarly, IOP represents the intraocular
pressure measurement. The state variables MD′ and MD′′

refer to the first and second derivatives of the MD mea-
sure with respect to time: velocity and acceleration. Similar
derivatives are taken of the PSD and IOP measures. Contin-
uous time data on MD, PSD, and IOP measurements are not
available because readings are at discrete time points, so we
estimate the derivatives from the discrete time data. Given
measurements x1 at time t1, x2 at time t2, and x3 at time t3,
the first derivative is estimated via 4x2 − x15/4t2 − t15 and
the second derivative is estimated via 44x2 −x15/4t2 − t15−

4x3 −x25/4t3 − t255/4t3 − t25. From the doctor’s perspective,
the visual field machine or IT system can estimate these
derivatives from the history of observations. This estimate
can then be combined with the underlying system dynamics
that capture the derivative changes in the dynamical system
model.

3.1.2. A Kalman Filter Model for the Disease Mea-
surements. Our discrete-time disease model is recursive.
In each period, there is a system transition and also a
measurement of the system that can be taken by the
observer/controller. The difference equation formulation of
these system dynamics consists of a state transition equa-
tion and a measurement equation. The transition equation
defines how the disease is progressing from one period to
the next and the measurement equation describes the sys-
tem’s observation of disease state through medical testing.
As an anchor for the recursive system equations, there is
an initial state that is assumed prior to any observations,
based on population characteristics found in the CIGTS and
AGIS clinical trials.
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State Transition Equation. In each period, t, the system
moves to a new state at t+1 according to a state transition
matrix T and a vector Gaussian white noise input �. The
Gaussian noise represents unmodeled disease process noise.
The recursive transition equation is given by

�t =T�t−1 +� t = 11 0 0 0 1N 1 (2)

where � is a Gaussian random vector with E6�7 = 0 and
Var6�7=Q. Clearly the system state, �t , is also a Gaussian
random variable for all t since it is the result of a linear
combination of Gaussian random variables.

Measurement Equation. In the measurement equation, zt
denotes the observation vector; i.e., the outcomes of the
series of tests that are performed at each glaucoma patient’s
visit. Let Z denotes the matrix that models how components
of the true state, �t , are observed; � is the Gaussian noise
component that denotes the test noise described in §1. The
measurement equation has the form

zt =Z�t + � t = 11 0 0 0 1N 1 (3)

where � is a Gaussian random variable with E6�7 = 0 and
Var6�7=H. Again, clearly the observation zt is a Gaussian
random variable for all t.

Finally, let the initial state be a Gaussian random vector,
X0, with E6X07= �̂0 and covariance matrix Var6X07= è̂0.

3.1.3. State Estimation and Prediction with the
Kalman Filter. For the above model, the Kalman filter
optimally estimates the mean and covariance parameters
that completely characterize the state of the linear Gaus-
sian system based on noisy observations. In each period,
the Kalman filter performs two steps to generate state esti-
mates: prediction and update. In the prediction step, the
linear state transition model is used to estimate the mean
and covariance of the next state. In the update step, new
observations are used to optimally correct the model’s pre-
diction so as to minimize the mean squared error of the
estimate: E6��t − �̂t�

27. Using the notation developed in
§3.1.2, the Kalman filter approach (see Kalman 1960) is
summarized below.

Prediction Step. The prediction step takes the most
recent mean and covariance estimate with information up to
time t, �̂t � t and è̂t � t , and uses the system dynamics model
from Equation (2) to predict the future state as

�̂t+1 � t =T�̂t � t (4)

è̂t+1 � t =Tè̂t � tT
′
+Q1 (5)

where �̂t+1 � t and è̂t+1 � t are the predicted mean and covari-
ance at time t+1 given observations up to time t. Also note
that the prime symbol, ′, represents the matrix transpose.

Update Step. After the prediction step, a new observa-
tion, zt+1, is obtained and the error between the prediction
and the observation is used to calculate the optimal new
state estimate. In this step, first the measurement resid-
ual, ỹt+1, and the predicted covariance of the measurement,
St+1, are calculated as

ỹt+1 = zt+1 −Z�̂t+1 � t (6)

St+1 =Zè̂t+1 � tZ
′
+H0 (7)

The optimal Kalman gain, Kt+1, is the solution to
an optimization that minimizes the trace of the esti-
mated covariance matrix (and thereby minimizes the mean
squared error of the estimate). The optimal Kalman gain is
given by

Kt+1 = è̂t+1 � tZ
′
·S−1

t+10 (8)

The optimal Kalman gain from Equation (8) is used to cal-
culate the optimal new state estimate, �̂t+1 � t+1 and è̂t+1 � t+1,
for the Gaussian state random variable as

�̂t+1 � t+1 = �̂t+1 � t +Kt+1 · ỹt+1 (9)

è̂t+1 � t+1 = 4I −Kt+1Z5è̂t+1 � t1 (10)

where I is the identity matrix. Equations (9) and (10) are
the key equations that define the recursive Kalman estima-
tor and will be relied upon in subsequent analysis.

Multiperiod Prediction. In our application, the condi-
tion of each patient varies from one patient to another,
so the optimal time interval between tests will vary from
one measurement to the next depending on the patient’s
measurement history. Therefore, our approach must predict
sufficiently many periods ahead before applying the update
step. By eliminating the update step for periods in which
no observation is performed, the transition equation yields
the l-step prediction equation (i.e., predicting l periods into
the future) as

�̂t+l � t =Tl�̂t � t (11)

è̂t+l � t =Tlè̂t � t4T
l5′ +

l−1
∑

j=0

TjQTj ′1 (12)

where �t+l is the Gaussian state variable at time t + l
given that observations are available through time t (i.e.,
the observation history). The first element of the sum rep-
resents the multiperiod state transition and the second ele-
ment of the sum in Equation (12) represents the multiperiod
process noise accumulation.

3.2. Application to Two 10+ Year Clinical Trial
Data Sets

In §§3.1.1–3.1.3 we presented the theoretical framework
for modeling disease progression in glaucoma patients. To
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validate our approach, we used real patient data from two
10+ years large randomized clinical trials of glaucoma
patients, CIGTS and AGIS. CIGTS is a randomized clinical
trial that followed 607 participants with newly diagnosed,
mild to moderate glaucoma for up to 10 years. During the
course of the trial, visual field and IOP readings were taken
every six months. Participants were initially randomized
to one of two treatment arms: medical or trabeculectomy
(a surgical intervention). Participants who did not respond
well to their treatment arm were given an additional treat-
ment of argon laser trabeculoplasty (ALT).

AGIS followed 591 participants with advanced glaucoma
for up to 11 years. Similar to CIGTS, measurements of VF
and IOP for each participant were taken every six months.
AGIS participants were randomized to one of two treat-
ment sequences: one sequence began with ALT and the
other began with trabeculectomy. Participants responding
poorly to their initial treatment received the other treatment
next. In both studies, for each participant a single eye was
studied. The study eye was assigned prior to randomization
based on the eligibility status of the eye. If both eyes were
eligible, it was assigned based on the treating physician’s
selection.

We combined the longitudinal data of the two random-
ized clinical trials into one data set. For our case study, we
focused on participants from the clinical trials who were
treated with medicine or ALT. Participants included in our
study were randomly divided into equal size training and
testing sets in a manner that maintained the original ratio
between progressing and nonprogressing patients, as well
as the mixture of mild, moderate, and advanced glaucoma
patients and patients coming from each trial in both the
training and testing sets. The time step for the linear Gaus-
sian system was set to six months to match the time step
of the data. Though the time step can be chosen to be
any arbitrary length, we chose six months to avoid making
assumptions about progression at points in time where data
were not available. In other words, one transition moves
the system forward in time six months. The training data
were used to calibrate the model, employing the expecta-
tion maximization (EM) algorithm for parameter estimation
of the Kalman filter and its implementation in Matlab (see
Ghahramani and Hinton 1996, Digalakis et al. 1993, Mur-
phy 1998) to find the matrices T (linear system dynamics),
Q (process noise covariance), Z (the observation matrix
that allows some or all of the states to be measured in a
possibly altered form), H (measurement noise covariance),
�̂0 (initial state mean), and è̂0 (initial state covariance).
Although the initial state, 4�̂01 è̂05, is based on the popu-
lation statistics, in practice when a new patient establishes
with a glaucoma specialist (or is newly diagnosed), several
baseline measurements are taken for MD, PSD, and IOP
to assess the state of the disease. These baseline readings
were then input as observations to the Kalman filter. Thus
the initial state is used only as an initial condition for the

recursion, which is then immediately tailored to the indi-
vidual patient through several (often 2+) baseline readings
before any testing schedules are generated. This allows the
system to adjust to the individual patient (and away from
the population mean) before results are generated. In our
tests on the clinical trials, distance from the initial state
did not significantly affect future state forecasts because
the baseline readings were sufficient for the model to be
tailored to the individual patient.

EM Algorithm. The EM algorithm has two steps that
are performed iteratively until the algorithm converges: the
E step and the M step. The system is initialized with an
estimate of the matrices and vectors we want to fit. In
the E step, the Kalman filter is run forward and back-
ward (known as Kalman smoothing) on the data to pro-
vide the best estimate of the true system state at each
time t given all the data available, including data coming
before and after time t in the sequence. This yields the
estimated Gaussian distribution for each time period. In the
M step, the expected log likelihood of the set of obser-
vations is maximized by taking matrix derivatives with
respect to the parameters to be estimated and setting them
equal to zero (with the expectation taken over the Gaus-
sian distribution from the E step). The parameters output
from the EM algorithm for a particular training data set
are given in Appendix B in the online appendix (avail-
able as supplemental material at http://dx.doi.org/10.1287/
opre.2015.1405).

3.2.1. Model Fit and Normality. Our modeling ap-
proach enables us to efficiently capture system and mea-
surement noise, but requires that we model our system as
a set of stochastic difference (or differential) equations that
are linear and have multivariate, correlated Gaussian noise.
To ensure the robustness of the modeling approach and
appropriateness in modeling glaucoma disease progression,
we performed a sensitivity analysis. First, we randomly
generated 25 training data sets (with the complement of
training used for testing), while maintaining the proportion
of different types of patients seen in the general popula-
tion. Then, we parameterized the Kalman filter on each one
of the 25 training data sets (using the EM algorithm) and
tested it on the remaining test data. The box plots in Fig-
ure 2 are a result of these 25 separate parameterizations
and runs of the Kalman filter. It can be seen from the tight
box plots in Figure 2 that the model is quite robust to the
patient data used to parameterize it.

After parameterizing the Kalman filter, for each partic-
ipant in the test set, we used the Kalman filter model to
predict MD values (MD being the most significant vari-
able) for five years into the future for most patients. The
prediction error (i.e., the predicted mean state minus the
actual observation) was computed for each of the 25 train-
ing/test data set combinations mentioned above. The esti-
mated average error and error standard deviation are given
in the left and right plots, respectively, of Figure 2. These
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Figure 2. (Color online) Kalman filter prediction error versus number of six month long periods into the future.
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box and whisker plots show that our model for state pre-
diction has very little bias. The red line is the median, the
upper and lower edges of the box show the upper and lower
quartiles of the data, and the whiskers show the maximum
and minimum values observed. The fact that the boxes
are very thin shows that the model is robust to the data
used to parameterize the filter. Equivalent results have been
obtained for other state variables.

Whereas we acknowledge that it is an approximation to
model the process noise and state observation noise as both
multivariate Gaussian random variables, numerical testing
revealed that the Gaussian model is a reasonable fit. We
analyzed the Kalman Filter residuals/innovations (the error
between next step prediction and the actual observation)
to test whether or not the system model is effective, evi-
denced by the residuals possessing a Gaussian distribution.
For each element of the residual vector, the p-values of
t-tests for unbiasedness (supporting the linearity assump-
tion) as well as for the Shapiro test for normality sup-
port the case that these are normally distributed with zero
mean. quantile-quantile (QQ) plots were used to compare
the quantiles from the empirical distribution of the actual
data to the quantiles of the hypothesized Gaussian distribu-
tion. For MD, PSD, and IOP, respectively, we have a match
of the data to a Gaussian distribution for values within
2.5, 2.8, and 1.9 standard deviations of the mean (which is
95% of outcomes even in the worst case of IOP). With this
good model fit and almost no bias (see Figure 2), we are
confident the model is sufficiently capturing critical system
dynamics.

3.3. Progression Models: Glaucoma ProP
Function

Our next step is to match the Kalman Filter variables with
treatment decisions. In glaucoma, as is the case with var-
ious chronic diseases, clinicians often face the challenge
of interpreting multidimensional data to make decisions of
how best to treat their patients (see Katz 1999). This can be
difficult in practice because the amount of data is so large
and is processed mentally without the aid of any similar
decision support system. Identifying and properly utilizing
this multidimensional space of information over a history

of observations is the purpose of the ProP function. Specif-
ically, the ProP function, f , maps the state space of physi-
ological indicators, � , to a measure of disease progression
in �0�1�: probability of progression.

In collaboration with subject matter experts and lever-
aging medical literature (e.g., Hodapp et al. 1993), we
developed a glaucoma progression definition using the
physiological indicators. Because there is no gold standard
to measure glaucoma progression, our work has focused
on identifying drops of three MD with respect to baseline
that are validated in at least one instance into the future
(see Musch et al. 2009). This definition has been com-
pared against other progression definitions (such as Nouri-
Mahdavi et al. 2004 and Hodapp-Anderson-Parrish from
Hodapp et al. 1993) on a subset of patients for which
sufficient data were available. Other definitions may be
further explored in the future, contingent on data avail-
ability. All glaucoma progression instances were validated
using the longitudinal data. After extensive testing of many
approaches, we chose a logistic function, f �x� where x is
the disease state vector, to assess the probability of glau-
coma progression for any patient at any given time:

f �x�=
1

1+ e−w�x�
� (13)

w�x�= b+ ax� (14)

where w�x� is a linear function of key risk factors,
including MD, PSD, and IOP measures and can include
other important factors such as structural changes to the
optic nerve, age, race, family history, medical history, and
genetic factors among others. The regression coefficients
are captured in the progression vector, a, which repre-
sents the n-dimensional direction of steepest ascent toward
progression.

We further consulted with glaucoma specialists and the
literature (e.g., Nouri-Mahdavi et al. 2004, De Moraes et al.
2011) to determine appropriate risk factors to consider in
developing the ProP function. For our case study, we used
generalized estimating equations with a logit link function
on the training set of study participants to parameterize
the ProP function. Starting with sex, age, race, baseline

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
0.

18
2.

75
.2

30
] 

on
 0

8 
O

ct
ob

er
 2

01
6,

 a
t 0

7:
12

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Helm et al.: Dynamic Forecasting and Control for Glaucoma
Operations Research 63(5), pp. 979–999, © 2015 INFORMS 987

MD, MD, MD velocity, MD acceleration, baseline PSD,
PSD, PSD velocity, PSD acceleration, baseline IOP, IOP,
IOP velocity, and IOP acceleration as our initial set of
covariates, backward variable selection was performed with
a significance level of 0.05 to determine the final set of
covariates for our case study. In addition, for a subset of
patients from the CIGTS trial, we also had available addi-
tional factors such as cardiac or vascular disease, disc hem-
orrhage, open angle glaucoma (OAG) diagnosis of both
eyes (study eye and fellow eye) at baseline (i.e., none, pri-
mary open angle glaucoma, pseudoexfoliation, pigmentary,
other). After performing forward and backward elimination
on that subset of patients, we further concluded that none of
the additional variables made a significant difference in our
predictions. While some of the variables were significant
in univariate analysis, they did not change our estimated
area under the ROC curve (AUC) when we incorporated
them into the models. Thus, these additional factors were
not included in the ProP logistic regression function.

Unfortunately, we could not include information on the
retinal nerve fiber layer as captured using optical coherence
tomography because the technology to gather such clinical
data were not available at the time the CIGTS and AGIS
trials were carried out. Genetic factors were also not avail-
able to us from the clinical trials used for validation of
our models. Incorporation of such factors, among others,
may improve the accuracy of the models presented. The
factors found to be relevant in our study were MD posi-
tion (MD), velocity (MDV) and acceleration (MDA), PSD
baseline value (PSDB), PSD position (PSD) and age. The
coefficients we used are given as

w4x5=−600035−000568·MD−400544 ·MDV

−101832 ·MDA−001615·PSDB+001536·PSD

+000255·age1 (15)

with a full description of the model and approach given in
Schell et al. (2013). The AUC (obtained from the Mann-
Whitney U statistic) for the ProP function applied to the
testing set was 0.919, which is clinically considered to
be very good. Additional covariates (including structural
changes to the optic nerve, diabetes mellitus, medical his-
tory, and genetic factors) may improve our estimations and
should be considered in future implementations of our mod-
els. Although IOP and its derivatives were not used as a
factor in the ProP function (Equation (15)), it was found to
be important in the Kalman filter modeling of test measure-
ment evolution because IOP interacts with VF and PSD.
A thorough treatment of the key factors involved in glau-
coma progression can be found in Musch et al. (2009) and
Schell et al. (2013).

4. Time to Next Test (TNT)
The idea behind our approach is to balance testing fre-
quently to catch progression early against the cost, discom-
fort, and inconvenience associated with testing. We capture

this trade-off by delaying testing until the point in time at
which the model indicates that we can no longer be sta-
tistically “confident” that the patient has not progressed.
Specifically, to determine the TNT, we forecast the patient
disease state trajectory into the future until the ProP func-
tion hits an optimized threshold indicating sufficient likeli-
hood of progression for a test to be performed. The TNT
interval of time to the next test is therefore determined by
the length of time it takes for the disease state forecast
to reach the optimized progression threshold. We develop
a stochastic point of maximum progression (POMP) func-
tion that maximizes the deterministic ProP function over
the n-dimensional Gaussian density of the forecasted state.
This yields the “worst case” point, or the point of max-
imum progression, within a confidence region around the
mean state vector; a conservative estimate of the patient’s
probability of progression. Experimental testing is used to
tune the parameters controlling the size of the confidence
region (�) and the optimized progression threshold (�) to
capture the trade-off between catching progression and cost
of testing mentioned above.

Figure 3 is a conceptual representation of this approach
for a three-dimensional state space. In this figure t is the
current period and the ellipsoid at period t represents the
100�% confidence region around the state estimate. As we
forecast the patients disease state further into the future
(e.g., periods t + 11 t + 21 0 0 0), the center of the confidence
region (i.e., the forecasted mean state) moves in accor-
dance with the disease dynamics (i.e., transition matrix T5.
In addition, the confidence region expands as the covari-
ance around the forecasted mean grows the further into
the future the state is predicted. The time of the next test
occurs at the first period in which the forecasted confidence
region intersects or exceeds the progression threshold (an
n-dimensional hyperplane), illustrated by the plane in Fig-
ure 3; in this case period t + 4.

Our model has two parameters, � and � , that control
how aggressively to test a given patient. � sets a thresh-
old on the probability of progression (the plane in Fig-
ure 3). At the same time that the probability that a patient
has progressed exceeds � the algorithm recommends tak-
ing another test at that time. Smaller values of � indicate a
lower tolerance for missing progression because the patient
reaches the threshold more quickly, generating more fre-
quent testing. � adjusts the size of the confidence region
around the predicted mean disease state (the ball in Fig-
ure 3), with larger values generating more frequent tests.
For clinician usability, we present in §§5.2 and 5.3 an intu-
itive three-level aggressiveness scale (low, medium, high)
to be selected by clinicians that set � and � to realize the
desired monitoring aggressiveness.

In practice, if clinicians receive a suspicious/unreliable
test result it is common to schedule a follow-up test in the
near future to confirm the results, because the test results
may not be informative and thereby would be ignored if
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Figure 3. Depiction of the confidence region point of maximum progression time to next test approach, POMP TNT.
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unconfirmed. Our optimal estimation and TNT schedul-
ing algorithm support this clinical process in the following
ways. First, the filtered ProP reading obtained immediately
upon receiving the exam results would give the clinician
an indication of whether there is concern regarding the
patient’s condition. The Kalman filtering helps to reduce
the noise in the testing giving the clinician a clearer pic-
ture of the patient’s status. If the clinician feels the VF
exam results are suspicious/unreliable (either because of
the filtered ProP estimate or because of some of the error
checking in the Humphrey Visual Field Analyzer), the
clinician will schedule a subsequent (follow-up) test for
the near future to either confirm or invalidate the suspi-
cious/unreliable test. This test will be done off line, and
when the clinician is satisfied, the nonsuspicious result will
be added to the Kalman filter algorithm and used to calcu-
late the time of the next regular test. Alternatively, the aver-
age (or weighted average) of the results might be included
in the algorithm. In the case of the two clinical trial stud-
ies on which we tested our algorithm, only nonsuspicious
results were included, which provides the same results as
the approach we describe for using this system in clinical
practice.

4.1. Point of Maximum Progression Time to Next
Test Approach

In this section we develop a closed-form solution to the
optimization of the ProP function over the Gaussian pre-
diction region. Mathematically we can define the 100�%
prediction region for the Gaussian random variable with
mean �̂t+l � t and covariance �̂t+l � t for l periods into the
future as

����̂t+l � t��̂t+l � t�

=�x �x−�̂t+l � t�
′�̂−1

t+l � t�x−�̂t+l � t���2�1−��n��� (16)

where �̂t and �̂t represent our current estimate of the mean
and covariance of the disease state at time t (see Chew
1966). Also, �2�1− ��n� is the 1− � quantile of the chi-
square distribution with n degrees of freedom.

The goal is to associate the state estimate with ProP by
using function f . A logical and conservative approach is

to find the maximum value of the ProP function, f , over
the prediction region, ����̂t+l � t� �̂t+l � t�. Given the current
state estimate, �̂t � t� �̂t � t , the stochastic POMP function, h�,
with respect to the ProP function, f , for the l-step state
forecast is given by

h���̂t � t� �̂t � t� l�= max
x∈����̂t+l � t ��̂t+l � t �

f �x�� (17)

where �̂t+l � t� �̂t+l � t are obtained from �̂t � t� �̂t � t through
Equations (11) and (12). We first observe that the predic-
tion region, ����̂t+l � t� �̂t+l � t�, defined by Equation (16) is
convex.

It is possible that for many chronic illnesses, as with
glaucoma, the ProP function will be a logistic regression
as described in §3.3. Therefore, maximizing the ProP func-
tion is equivalent to maximizing w�x� (see Equation (13)),
which is a linear function of x. Thus finding the point of
maximum progression is then a convex optimization prob-
lem. To solve this optimization problem, we rely on the
Karush-Kuhn-Tucker (KKT) conditions.

Recall that a is the progression vector of risk factors
from Equation (14). The optimization of the ProP function
over the prediction region has a closed-form solution given
by Theorem 1, which is proved in the online appendix.
The closed-form solution was determined using a two-stage
approach based on the observation that the KKT conditions
are both necessary and sufficient. First we solved the KKT
stationarity conditions for an arbitrary coefficient of the
constraint gradient. The resulting solution was input into
the complementary slackness conditions to determine the
appropriate coefficient.

Theorem 1. Given the l-step prediction region ����̂t+l � t�

�̂t+l � t� defined by Equation (16) with � ∈ �0�1� and pro-
gression vector a, the maximum value of the ProP function,
h�, and the associated disease state, h̃�, have a closed-form
solution,

h���̂t � t��̂t � t�l�= max
x∈����̂t+l � t ��̂t+l � t �

a′x

=a′�̂t+l � t+

√

�2�1−��n�a′�̂t+l � ta (18)
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h̃�4�̂t � t1è̂t � t1l5= argmax
x∈D�4�̂t+l � t 1è̂t+l � t5

a′x

= �̂t+l � t+

(

√

�241−�1n5

a′è̂t+l � ta

)

·è̂t+l � ta0 (19)

Finally, given a progression threshold of � , the
time to next test is determined by the TNT function,
F�1 �4�̂t � t1 è̂t � t5, where F�1 � 2 �n × 4�n × �n5 → �, maps
the current state to the time interval between the current
observation and the next observation:

F�1 �4�̂t � t1 è̂t � t5= min
l∈Z+

l s.t. h�4�̂t � t1 è̂t � t1 l5¾ �0 (20)

In the next section we prove that the POMP function, h�,
is monotonically increasing in l, therefore the TNT func-
tion can be solved quickly and easily with iterative search
techniques. For a problem with n possible testing epochs,
a simple binary search that divides the search space in half
at each iteration can solve this problem in the worst case
on order of O4log4n55, because the terms are monotoni-
cally increasing in l. Even when the search space is large,
the algorithm will find the solution quickly. For example,
imagine a disease that can be monitored on intervals of
one second over the course of a year (a total of 31,449,600
possibilities). Our search method requires at worst 25 func-
tion evaluations plus comparisons to solve the optimization,
which would be nearly instantaneous.

In §5, we compare the performance of our TNT algo-
rithm with currently accepted medical practice. We also
present in §4.2 structural insights from our approach that
have been hypothesized by researchers and clinicians but,
to our knowledge, have not yet been rigorously validated.
The first (see Jansonius 2007) is that testing intervals
for glaucoma should be variable rather than fixed. Our
approach goes even further by showing how the testing
interval can be determined using the key physiological indi-
cators and providing an indication of the benefits.

4.2. Structural Properties of the TNT Algorithm

In this section we discuss the structural properties of the
TNT algorithm and the insights they provide. Property 1,
given in Theorem 2, says that the further into the future
we wait before testing, the more uncertain we are about
whether the patient has progressed or not and the more
likely the patient has gotten worse, and thus are more
likely to test. Property 2, given in Lemma 1, states that the
more patient observations the model has, the smaller the
estimated covariance is in the direction of progression, a
(i.e., the direction of the progression vector a from Equa-
tion (14)). Property 3, given in Theorem 3, states that the
system will test more frequently when there is less informa-
tion about a patient. Property 4, given in Theorem 4, states
that the worse off (i.e., closer to progression) a patient is,
the more frequently they will be tested.

For many chronic diseases, called degenerative dis-
eases, the disease tends to get worse over time. Some
clear examples include Alzheimer’s, Parkinson’s, and ALS
among others. For glaucoma, lost sight cannot be recov-
ered. Mathematically the progressive nature of chronic dis-
ease can be captured by the following condition on the
system transition matrix, T.

Definition 1. We call a linear transformation T, a pro-
gressing transformation with respect to progression vector
a ∈Rn, if and only if

(i) a′T�¾ a′� for all states � ∈S, and
(ii) for any matrix B such that a′Ba¾ 0, it follows that

a′TBT′a¾ a′Ba.

The intuition behind Definition 1 is as follows. Note that
a is a vector representing the direction of progression (in n
dimensions). For (i), the linear transition matrix represent-
ing disease dynamics, T, transforms the state �. If a′T�¾
a′� then for any current state �, applying the linear trans-
formation will always result in a state that is larger in the
direction of progression. This captures the medical prop-
erty that patients with glaucoma do not regain lost sight
(i.e., get “better”). Condition (ii) is the quadratic version
of condition (i) for capturing the progression concept with
respect to the covariance matrix.

Property 1 (Prediction Uncertainty) from Theorem 2,
shows that as the Kalman filter predicts the patient’s state
further into the future, it monotonically approaches the
threshold, � , for scheduling a next test. It supports the intu-
ition that, the further into the future we wait before testing,
the more uncertain we are about the patient’s disease state.

Theorem 2. If the linear system transformation, T, is a
progressing transformation, then for any state 4�̂t � t1 è̂t � t5,
the function

h�4�̂t � t1 è̂t � t1 l5= a′�̂t+l � t +

√

�241 −�1n5a′è̂t+l � ta

is monotone increasing in l.

Property 2 (NumberofObservationsvs.Uncertainty)
shows that the covariance around the disease state estimate
in the direction of progression is decreasing in the num-
ber of observations. Thus, the more information the system
has about a patient, the less uncertainty there is in the dis-
ease state estimate with respect to whether the patient has
progressed. For a rigorous statement of this property, we
present notation and three definitions of properties of the
covariance matrix.

We consider a system where there is an initial obser-
vation at time ts and a final observation at time tf . Let
çn46ts1 tf 75 be the set of open loop policies with n observa-
tions at times s11 s21 0 0 0 1 sn, where the first observation is at
time ts = s1 and the final observation is at time tf = sn. Let
è̂

�n

sj � sj−1
be the covariance estimate at time sj given informa-

tion up through time sj−1 under policy �n—which can be
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determined from è̂
�n

sj−1 � sj−1
using the 4sj − sj−15-step predic-

tion Equation (12). Finally, let K�n

sj � sj−1
be the 4sj − sj−15-

step Kalman gain under policy �n defined by replacing
the one-step covariance estimate with the 4sj − sj−15-step
covariance matrix in Equations (7) and (8).

Definition 2. Given an open loop observation schedule
�n = 8s11 s21 0 0 0 1 sn9 ∈ çn46s11 sn75, we define the covari-
ance estimate adjustment at time sj ∈ �n to be C�n

sj 1 sj−1
=

K�n

sj � sj−1
Z · è̂

�n

sj � sj−1
.

In other words, the covariance estimate adjustment at
time sj under policy �n is simply the amount by which
the covariance is reduced as a result of having an obser-
vation at time sj , given prior observations at s11 0 0 0 1 sj−1.
This is the matrix that is subtracted as the second term of
Equation (10) in the Kalman filter update step.

Definition 3. For arbitrary square matrices M and N of
the same dimension n, for any a ∈Rn, we let M�a N mean
that a′4M−N5a¾ 0.

Definition 3 is similar to the matrix equivalent of “greater
than” for scalars, but is tied to a specific multiplier a.
The final definition will enable us to define a relation-
ship between the cumulative covariance estimate adjust-
ment over the entire schedule, �n, of systems with different
observation schedules.

Definition 4. We call a matrix sequence, A11A21 0 0 0 1An,
a-monotone if An �a An−1 �a · · · �a A1.

It can be shown that systems with uncorrelated noise
components have the a-monotonicity property for the sum
of covariance estimate adjustments. For correlated noise,
this property is difficult to show analytically but can be
checked numerically for any system using some simple
code (we used Matlab). This has been checked and clearly
holds for the system parameterized by our clinical trial data
described in §5. In discussions with our clinical collabora-
tors, it is expected that this property will hold for a variety
of chronic diseases. The following lemma, which is proved
in the online appendix, shows that if more patient obser-
vations are available to the system the covariance will be
smaller in the direction of progression.

Lemma 1. Let �m ∈çm46ts1 tf 75 and let �n =�m ∪�n−m ∈

çn46ts1 tf 75 be a policy that calls for all the observa-
tions of �m but also has an additional n−m observations
within the interval 4ts1 tf 5. Under the assumption that the
matrix sequence 4

∑k
j=2 C

�k
j for k = 2131 0 0 0 such that �2 ⊂

�3 ⊂ · · · ⊂ �k) is a-monotone in k, the covariance matrix
è

�m

tf � tf
�a è

�n

tf � tf
for n>m.

The result from Lemma 1 supports both Property 2—
more patient observations correlates with more certainty
about whether the patient has progressed—and Prop-
erty 3—the length of the testing interval is shorter when
the system has less information about a patient.

Property 3 (Number of Observations vs. Testing Fre-
quency) shows that the length of the testing interval is
shorter (i.e., tests are scheduled more frequently) when the
system has less information. This property mirrors physi-
cian behavior in that a glaucoma specialist will often see
the patient more frequently when they have less information
about the patient (e.g., a new patient), but if the patient
has been stable for a long time the specialist will begin
to increase the interval between tests. The following theo-
rem, proved in the online appendix, supports this intuition
analytically.

Theorem 3. Given open loop testing policies �n ∈

çn46ts1 tf 75 and �m ∈ çm46ts1 tf 75 such that n > m
and �m ⊂ �n, under the assumption that the covari-
ance estimate updates are a-monotone, F�1 �4�̂t � t1 è̂

�m

t � t5 ¶
F�1 �4�̂t � t1 è̂

�n

t � t5, where F�1 �4 · 1 · 5 is given by Equation (20).

Property 4 (Disease State vs. Testing Frequency)
shows that a patient who is “worse off” will be tested more
frequently than a patient who is “doing well.” The follow-
ing theorem supporting Property 4 is proved in the online
appendix.

Theorem 4. Given two patients at time twith mean state vec-
tors �̂1 and �̂2 and covariance matrices è̂1 and è̂2, if a′�̂1 >

a′�̂2 and è̂1 �a è̂2 then patient 1 will be tested no later
than patient 2.

The next section illustrates how our approach can benefit
clinicians by applying the POMP TNT algorithm to two
10+ year clinical trials (AGIS and CIGTS).

5. POMP TNT Algorithm Applied to AGIS
and CIGTS Clinical Trials

We begin by describing the design of the experiment and
then we present the results comparing the POMP TNT
algorithm with fixed-interval schedules that are common in
practice. Starting from a cost-based optimization in which
there are costs for testing and costs for missed progres-
sion, we identify a simple three-zone aggressiveness scale
that allows clinicians to tailor their treatment to match the
needs of a patient in a manner that is simple and can be
related to a traditional fixed-interval testing approach. We
then compare the associated Pareto improving schedules
with fixed-interval testing schemes and age-based threshold
policies.

5.1. Model Usage and Design of Experiment

Data and model parameterization using AGIS and CIGTS
clinical trial data are described in §3.2. After parameteriz-
ing the Kalman filter and ProP function with the training
set as described in §§3.2 and 3.3, POMP TNT was used to
dynamically generate a monitoring schedule for each patient
in the test data set. For both POMP TNT and fixed-interval
methods, the scheduling process was terminated either at
the end of the trial or when progression was detected,
where progression was determined by the criteria described
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in §3.3. Based on input from our clinical coauthors, we
compared POMP TNT with fixed-interval schedules using
three performance measures: (1) average number of tests
per patient (number of tests, lower is better); (2) fraction of
samples among progressing patients (our data are discrete
and form a sequence of measurement samples spaced apart
by six month intervals) at which the data indicate progres-
sion and for which the algorithm called for a test (accuracy,
higher is better); (3) average number of periods (where a
period is six months) that a patient’s progression went unde-
tected (diagnostic delay, lower is better).

The POMP TNT algorithm has two parameters that influ-
ence the testing aggressiveness: (1) the threshold 	 for
determining whether progression has occurred using the
logistic regression from Equation (13) and (2) the size �
of the prediction region (i.e., confidence level). Using the
training data, for each interval length (i.e., 1, 1.5, and
2 years) we found the 	 and � combination that generated
a POMP TNT schedule with approximately the same aver-
age number of tests per patient as the corresponding fixed-
interval schedule while either (1) maximizing accuracy or
(2) minimizing diagnostic delay. To do so, we performed a
two-dimensional search on the training data as follows. Let
TPPTNT �	��� be the average number of tests per patient
for the training data set using the POMP TNT algorithm
with parameters 	 and �. Let TPPn be the average number
of tests per patient for fixed interval testing with testing
interval length of n years. Now for each interval length
n= 1�1�5�2 years we perform the following two steps:

1. For each 	 on a discrete grid between 0 and 1, com-
pute �n�	� as the largest value of � (also on a discrete grid
between 0 and 1) such that TPPTNT �	��n�	��� TPPn.

2. Find 	∗
n = arg min	 DiagnosticDelay��n�	��, where 	

is optimized over the discrete grid from (1) above.
The same search can be performed to maximize accu-

racy. Finding �n�	� can be done very quickly using a binary
search because of the fact that, for any given value of 	 , the
number of tests per patient is monotone increasing in the size
of �. Monotonicity in � can be verified quickly by consider-
ing Equations (18)–(20). As will be seen in §§5.2 and 5.3, we

Figure 4. The robustness of parameter choices for � and ��	� is presented for low, medium, and high aggressiveness
settings as follows: (a) the calculated ��	� for each value of 	 , (b) the accuracy of setting the time to next
test at a stage in which progression occurred vs. ��	�, (c) the diagnostic delay vs. ��	�.
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align the POMP TNT parameters with these three fixed inter-
vals common in current practice, n= 1�1�5� and 2 years, to
enable us to suppress the � and 	 parameters and instead pro-
vide clinicians with aggressiveness levels (zones) that they
can adjust to tailor their treatment: low �	∗

2 � �2�	
∗
2 ��, med

�	∗
1�5� �1�5�	

∗
1�5��, and high �	∗

1 � �1�	
∗
1 ��.

Robustness of Parameter Choice. A nice property of this
approach to choosing algorithm parameters � and 	 is that
the accuracy and diagnostic delay resulting from the choice
are relatively insensitive to the initial choice of 	 and to the
combination of �	���	�� for each regime, n. Figure 4(a)
shows how � changes with 	 for each level of aggressive-
ness (low, medium, high) as a result of the search described
above. Figures 4(b) and (c) show the key performance met-
rics of accuracy and diagnostic delay, which for each level
of aggressiveness, are very robust to the choice of 	 and �.
As long as the initial 	 is selected from a large range in
the middle—not too close to zero or one—the accuracy
and diagnostic delay resulting from �	n��n�	n�� is nearly
identical for any initial choice of 	 . From our experiments
applying the algorithm to the two clinical trial data sets
(see Figure 4), it appears that algorithm is robust in terms
of accuracy and diagnostic delay for any choice of ��	�
between 0.2 and 0.8.

5.2. A Cost Model and Zone-Based Method for
Clinician Model Control

From a healthcare policy perspective, it is important to con-
sider the trade-off between the cost of undetected glaucoma
progression (per unit of time), cp, and the cost per test per-
formed, ct . Let � = cp/ct be the cost ratio of progression
cost to testing cost. A low cost ratio implies a desire to
avoid overtesting, whereas a high cost ratio implies a pref-
erence for more aggressive testing in the hopes of early
detection of progression. As mentioned previously, differ-
ent patients may experience differently the discomfort of
both testing and the disease’s symptoms. The cost ratio can
capture the sense of how burdensome the testing procedures
are relative to disease progression and produce a schedule
tailored to each patient’s preference. This ratio can also be
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Figure 5. (Color online) Performance measures as a function of the cost ratio.
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used by the clinician to capture how aggressively they feel
the disease should be treated in each individual patient.

We assessed the total cost per patient as cp ×

�diagnostic delay� + ct × �no� of tests�. Using a similar
procedure to the one described in §5.1, we performed a
search on the training set to identify the � and 	 combi-
nation that minimized the average total cost per patient for
each cost ratio. The upper left graph in Figure 5 presents
the conversion between the cost ratio and the optimal value
of �, where the optimal � and 	 were determined from the
training data. If testing was allowed on a continuous time
scale then one would expect this plot to be monotonically
increasing. However, because it is only possible to test at
discrete time points (six month intervals) the same � value
may be optimal for multiple cost ratios. Further, � and 	
are determined jointly by maximizing performance on the
training data. For these reasons, it is possible for the same
rho to be optimal for different cost ratios. In the remaining
three graphs of Figure 5 we plot the performance metrics
on the testing data versus the � values obtained from the
cost optimization.

In the upper right graph of Figure 5, we have marked
three � zones related to how aggressively the algorithm
will test a patient: low, medium, and high. These zones
are found by comparing the testing frequency with the
frequency of the 1, 1.5, and 2 year fixed interval test-
ing schemes. The frequencies of the fixed-interval testing
schemes are shown with the three different arrow types

(zone three is reached at a cost ratio beyond the upper limit
shown in the upper left plot). The two year fixed schedule
does not result in an exactly proportional reduction in the
number of tests per year because of the nature of the end
of horizon effects of our CIGTS and AGIS data sets. The
result suggests an intuitive zone-based method for adjust-
ing the POMP TNT algorithm to tailor the testing schedule
to each patient. These zones will be investigated in the next
section as a simple three-zone system for clinician interac-
tive model control.

Remark 1. According to our clinical collaborator, a high
aggressiveness testing schedule would likely be aligned
with six month testing intervals, medium to one year, and
low to two years; however, CIGTS and AGIS data are avail-
able only every six months, so a six month testing scheme
would not yield meaningful results for comparing POMP
TNT with fixed-interval testing. Although more frequent
VF testing can be appropriate for some patients, this is
uncommon in part because such tests are time consuming
and tiring to the patients (see Glen et al. 2014). In prac-
tice, most of the patients have no more than one to two
tests per year on average (see Fung et al. 2013, Stein et al.
2012). Moreover, frequent fixed-interval testing regimens
(e.g., four month and six month) have been shown to be
worse at estimating rates of MD loss and glaucoma pro-
gression than variable-spaced follow-ups (see Crabb et al.
1997), so this evidence and other studies provide further
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support to the need to investigate personalized follow-up
schemes (see Jansonius 2006, 2007).

5.3. Pareto Improving Schedules

In this section we show how the POMP TNT algorithm
dominates both fixed-interval schedules as well as an opti-
mal age-based threshold policy in a Pareto sense. To test
the fixed-interval schedules, which we call “FI,” we sched-
uled tests at fixed frequencies (i.e., periods of 1, 1.5, and 2
years). These intervals were chosen because they are mul-
tiples of six months, ensuring that whenever a test was
called for, the data in the data set were available to eval-
uate whether or not the patient had progressed, and hence
whether or not any given test caught an instance of pro-
gression and, if so, how quickly it did so. Given the time
step of the data, it is not very informative to consider a six
month fixed interval because this implies testing in every
possible period and its accuracy and diagnostic delay can-
not be analyzed under our current definitions. If the data
were available every three months, then we would update
our definition of accuracy and diagnostic delay, leading a
six month fixed-interval scheme to achieve only an accu-
racy of 50% and diagnostic delay of 1.5 months. If data
were available, we could also update the time step for the
Kalman filter to be three months instead of six months and
be able to compare the two methods, though unfortunately
data were not available every 1.5 months.

VF follow-ups longer than one year are common in
practice, as discussed by Stein et al. (2012). Additionally,
we have been able to further support our fixed-interval
choices of 1, 1.5, and 2 years from data that we collected
from patients being treated at the Kellogg Eye Center by
various clinicians. We randomly selected 34 patients seen
at the Kellogg Eye Center between January 1, 1990 and
July 31, 2013 with similar physiological characteristics as
the patients upon which our models were parameterized.
IRB was obtained for this study, and all data were manu-
ally entered with two people analysts assigned to each entry
session to ensure reliability of the information gathered and
avoid data entry errors. The median time in between read-
ings was 370 days (i.e., 50% of the patients had over a
year in between VF readings), and all patients sampled had
over six months in between VF readings (the minimum was
217 days between readings). This suggests that our selec-
tion of 1 year, 1.5 years, and 2 years is a good benchmark
for comparing our algorithms with current practice.

Table 2. Performance of fixed-interval testing schedules and POMP TNT algorithm.

High freq (1 yr) Med freq (1.5 yr) Low freq (2 yr)

FI OPT TH TNT FI OPT TH TNT FI OPT TH TNT

No. of tests per year 100 0096 0091 0067 0066 0067 0050 0053 0055
Accuracy% 50 50 83 33 37 63 25 26 55
Diag. delay (mo.) 300 3017 1026 6000 6015 3058 9000 8086 4095

To avoid introducing any bias, we varied when the first
test of the sequence began, alternately choosing the first
test to be the patients first visit, second visit, third visit, and
so on. We also tested a policy that used information on the
patient’s age as well. This policy employs two age thresh-
olds dividing the patients into young, middle age, and old
age groups. Each group was assigned its own testing fre-
quency. For example, one may start out testing once every
six months in the young group, then switch to once a year
for the middle-aged group, and finally to once every two
years for the older group. To find the best such set of poli-
cies, which we term “OPT TH,” we performed an exhaus-
tive search over the training data by changing (1) the two
age thresholds that divided the three groups, and (2) the
testing frequencies assigned to each group. We were then
able to find the thresholds and frequency assignments that
performed efficiently (lying along the Pareto frontier). As
with the FI schedules, we varied the starting time of the
first test within each age group to avoid bias introduced
by choosing an arbitrary starting point for the sequence of
tests.

Whereas choosing continuous variables � and � in apply-
ing POMP TNT requires a greater depth of understand-
ing, choosing a level of aggressiveness from among prede-
fined zones (i.e., low, med, high) is both intuitive and easy.
Further, aligning the zones with a particular fixed-interval
schedule allows clinicians to relate the zones to their previ-
ous experiences in treating patients. This increases the ease
of adoption into clinical practice. For the purposes of this
paper, it is appropriate to define the terms low, medium,
high to specifically refer to levels of aggressiveness in
patient testing that have an equivalent average frequency to
the 1, 1.5, and 2 year fixed testing intervals. Table 2 dis-
plays the accuracy and diagnostic delay (averaged across
all patients in the test data set) of FI schedule (1, 1.5, 2
years), the optimal threshold policies (OPT TH), and the
corresponding POMP TNT schedule (high, med, low).

Table 2 shows that POMP TNT dominates the 1, 1.5,
and 2 year fixed-interval schedules by providing higher
accuracy and lower diagnostic delay with close to the
same testing frequency on average. Perhaps surprisingly,
the optimal age-based threshold policies barely outperform
fixed-interval policies. This implies that the information
update from new test results used to make POMP TNT
testing decisions has a greater impact than the age of the
patient used in isolation. Also note that POMP TNT yields
better accuracy than the one year fixed interval schedule
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Figure 6. (Color online) Fixed-interval and POMP TNT accuracy and diagnostic delay versus average tests per patient.
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while using approximately as few tests as the two year
fixed interval schedule. The Pareto curve in Figure 6 fur-
ther suggests that POMP TNT in fact would be able to
dominate all fixed-interval schedules and optimal thresh-
old policies across all dimensions. By adjusting model
parameters in Figure 6, we designed schedules over a
finer range of levels of aggressiveness than simply low,
medium, and high. For equivalent frequency FI and OPT
TH schedules, the POMP TNT schedule with the equiva-
lent number of tests per patient yields between 30%–33%
increase in accuracy and between 40%–58% decrease in
diagnostic delay. As a final note, the model was tested
on different subgroups of patients. The algorithm out-
performed yearly fixed-interval testing for all subgroups.
As expected, it scheduled more tests per year on pro-
gressing (versus nonprogressing) patients, on AGIS (versus
CIGTS) patients and on African-American (versus Cau-
casian) patients (significant at p= 0�05, full results can be
found in Schell et al. 2014).

We acknowledge that, if a sufficiently low cost of testing
is provided (or a high cost of progression), our algorithm
will eventually call for testing every six months (or at every
period at which testing is possible). We also acknowledge
that a fixed-interval schedule may be preferred by some
patients and/or practitioners. For example, the patient may
prefer knowing that he or she will always be tested every
12 months rather than having to remember when he or she
will be tested next. On the other hand, it may be easier
for providers to forecast resource utilization if all patients
are tested at fixed intervals of time. Also, some clinicians
may prefer testing all patients at fixed intervals of time,
rather than having to rely on algorithms to determine when
patients should be tested next. Note that for every dynamic
policy, there exists a fixed-interval policy with frequent
monitoring, which performs better than the dynamic policy
(e.g., one in which the monitoring interval is equal to the
shortest possible time step in the dynamic policy). There-
fore, for convenience, physicians can continue to use fixed-
interval policies. Notice, though, that testing at fixed and
frequent intervals of time will come at the cost of increased
testing and hence cost.

6. Integrating a Data-Driven Decision
Support Tool Into Glaucoma Clinical
Practice

In treating patients with open-angle glaucoma, clinicians
are faced with the task of quickly and efficiently processing
the results from a number of quantitative tests including
visual fields, intraocular pressures, and results from struc-
tural measurements of glaucoma such as optical coherence
tomography (a topic for future research). Current practice
often requires ophthalmologists or optometrists to make
gestalt judgments based on their experience and expertise
as to whether glaucoma progression has occurred or not
and when future testing should be performed.

Our glaucoma decision aid tool could enhance current
practice by providing clinicians with personalized, dynam-
ically updated recommendations regarding follow-up vis-
its and diagnostic testing. For each glaucoma patient, this
method would compute the probability of progression of
the patient as a function of time in the future. In practice,
past test results from a patient’s medical record would be
entered into the POMP TNT tool. As new tests are taken
at subsequent visits, these test results too would be entered
into the tool, which would update in real time the Kalman
filter model estimates of key variables used to estimate
the future probability of progression over time. The deci-
sion support tool would provide the eye care provider with
(1) the current ProP rating (signaling whether or not pro-
gression has occurred at that particular visit), and (2) a sug-
gested time length into the future for the patient to return
for their next VF and IOP tests, depending on the aggres-
siveness level (e.g., low, medium, or high) that the clinician
and patient deem appropriate. If greater detail is desired,
our method can forecast the projected ProP trajectory years
into the future (with estimates on the variance of these fore-
casts). This tool could be further enhanced in the future to
incorporate additional parameters not presently available to
the investigators, e.g., central corneal thickness and OCT
results (see De Moraes et al. 2011).

Starting from a cost-based optimization in which there
are costs for testing and costs for missed progression,
we identified a simple three-zone aggressiveness scale that
allows clinicians to tailor their treatment to the individual
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patient. For each aggressiveness level, the tool would use
corresponding model parameters, which are precomputed
by the analysis software based on historical data at the pop-
ulation level (e.g., see Figure 5 for an example of parame-
ters set to match on average the expected testing frequency
of a fixed-interval schedule). The clinician may choose the
aggressiveness level based on their clinical experience in
managing patients with glaucoma along with consultation
with the patient of his or her preferences. One guiding fac-
tor in choosing an aggressiveness level could be, for exam-
ple, how patients feel about their disease (e.g., Burr et al.
2007). Factors that may go into the decision include the age
of the patient, the underlying severity of the glaucoma and
perceived likelihood of progression to blindness (patients
with more severe disease tend to require closer monitoring),
the status of the other eye (monocular patients are often
monitored more aggressively), the general health of the
patient (patients who have limited life expectancy may not
require aggressive monitoring as they will likely die before
they go blind from glaucoma), input from the patient (some
patients may be unwilling to undergo frequent monitoring
or live many hours away from the eye care professional
and it would be infeasible to monitor them very aggres-
sively), and other factors. Clinicians are trained to make
just such assessments and to choose an aggressiveness level
of monitoring that is appropriate for each patient. Combin-
ing expert judgment, consultation with, and knowledge of
the patient, the clinician may determine how aggressively
to test the patient. Our framework would then assist in the
decision of when to schedule the tests based on the desired
level of aggressiveness. Notice that these are decisions that
clinicians already routinely make in conjunction with their
patients. Since each aggressiveness level is associated with
a fixed-interval testing frequency, the clinicians are able to
relate this choice back to testing schedules that they are
familiar with. Although we have mapped aggressiveness
levels to cost ratios, future work may also link the choice of
aggressiveness level to the glaucoma-specific health status
of the patient and the patients utility/disutility from the dis-
ease (such as Burr et al. 2007). The analytics our algorithm
provides can support and inform these decisions.

6.1. Model Limitations and Areas for Future
Exploration

There are various limitations that are either not considered
in this work or not possible using existing systems sci-
ence. The first limitation lies in the scope of factors that
are incorporated in our glaucoma decision aid. Although
factors such as medical comorbidities (lower systolic per-
fusion pressure, lower systolic blood pressure, cardiovas-
cular disease), central corneal thickness, and presence of
beta-zone parapapillary atrophy have been found in some
studies and univariate analyses to be risk factors associated
with glaucoma progression, these data were not available
in the data sets used in the present analysis. Other factors,

such as bilaterality of disease, exfoliation syndrome (a sub-
type of glaucoma), and presence of hemorrhages around
the optic disc were available in only a subset of patients
that we had access to, and were found not to be signifi-
cant in predicting progression through backward and for-
ward elimination. Although we were not able to account
for some factors considered in other studies, we were able
to incorporate demographic characteristics of the patients
such as age and race into the algorithm and to show that
other factors did not improve algorithm performance. Even
without these additional factors, the algorithm outperforms
yearly fixed-interval and optimal age-based dynamic inter-
val testing strategies. In the future we hope to acquire other
data sources that contain information regarding some of the
additional risk factors to incorporate them into the decision
aid tool. Additionally, data availability only at six month
intervals prevented us from testing our approach on finer
intervals. As the testing intervals become shorter, the ben-
efit of our approach in terms of absolute accuracy relative
to a fixed-interval policy may decrease. Along these lines,
it should be noted that for every dynamic policy, there is
a fixed policy that will perform better in terms of accu-
racy. For example, one could set the fixed interval to be
the smallest step of the dynamic policy to achieve better
accuracy, though more frequent testing will come at higher
costs.

Second, we performed our analysis on data from patients
who agreed to participate in a randomized clinical trial.
Though we would not expect substantial differences in
performance on other patients with glaucoma who are
receiving care outside the setting of a clinical trial, we
acknowledge that participants in clinical trials may be a
biased sample. The fact that POMP TNT performed well
on participants in two different clinical trials, though, sug-
gests that it should perform well on patients with different
severities of glaucoma. Additional work is required to val-
idate our decision aid tool on patients who are receiving
care outside a clinical trial setting, especially those with
tests taken at varying time intervals. Third, we note that
the assumption of Gaussian noise is necessary to perform
the computations of our linear Gaussian systems model.
While we validated the Gaussian assumption for our clini-
cal trials patients, it is possible that other systems may not
follow strictly Gaussian noise distributions. In this case, the
Kalman filter remains unbiased but the estimator no longer
minimizes the variance of the estimate, therefore the result-
ing schedules would be more conservative (higher variance
means more frequent testing). Thus, in this case, some effi-
ciency would be sacrificed, but the patients would benefit
from earlier detection. Fourth, we do not directly consider
patient utilities (for testing versus progression), and we
would rather leave this subjective assessment up to the clin-
ician when they choose whether to use a low, medium, or
high aggressiveness parameter setting to incorporate into
when next to test each patient. Though one might try to
estimate patient utility functions directly, we feel that it is
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best for a clinician to decide this based on their knowl-
edge of each patient and his or her circumstances. Fifth,
we consider patient heterogeneity through updating disease
trajectories through the tests that are received over time.
The underlying transition matrix is not changed over time.
Including a learning component in the transition dynamics
is the subject of future research. Sixth, we use a regression-
based smoothing method to estimate velocities and accel-
erations. While these functioned sufficiently well in our
case study, other methods such as fitting splines to the data
may prove useful in this and other contexts. Finally, in
our analysis, we assume full compliance with the schedule
generated and do not specifically model compliance in our
algorithm. This is out of scope for this work but represents
an area for future exploration.

7. Conclusions and Future Work
This paper contributes a new modeling paradigm for the
monitoring of glaucoma and other chronic diseases. In con-
trast to disease detection models, chronic diseases often
require monitoring a number of key physiological indi-
cators that provide rich and dynamic information about
a patient’s changing condition. To take full advantage of
this data rich environment, we developed a multivariate
state space model of disease progression based on the
Kalman filter to forecast the disease trajectory. Then the
ProP function was optimized over the Gaussian density of
the Kalman filter to determine the TNT.

Beyond the ability to handle multidimensional state
spaces, a key benefit of this approach is that the model
output summarizes the full distribution on the patient’s cur-
rent state via the mean vector and the covariance matrix
of a Gaussian random variable. This allows the incorpo-
ration of both patient system noise and testing noise into
the state space model and yields a far richer characteri-
zation of the patient’s health state than simpler estimation
and forecasting methods. Our decision support approach
is flexible enough to allow clinician judgment by setting
model aggressiveness levels to complement their medical
knowledge with the advanced statistical predictions. This
approach will benefit both eye care professionals and their
glaucoma patients, and it will potentially translate to other
chronic diseases.

Our validation study was based on data from the two
10+ year clinical trials, CIGTS and AGIS. It demon-
strated that POMP TNT was able to outperform fixed-
interval regimens in terms of accuracy—30%–33% better
than comparable fixed-interval schedules—and diagnostic
delay—40%–58% better. This confirms a hypothesis within
the medical community that variable intervals may in fact
outperform fixed-interval testing. POMP TNT also provides
a rigorous, analytical tool for harnessing large amounts of
historical data to determine the appropriate variable inter-
val lengths between tests. We believe that this research
approach will be useful to clinical practice and provide a
theoretical framework for addressing the unique features of
monitoring problems.
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